
Mathematical Logic
Part One

Question: How do we formalize the
definitions and reasoning we use in our

proofs?

Where We're Going

Propositional Logic (Today)

• Basic logical connectives.

• Truth tables.

• Logical equivalences.

First-Order Logic (Wednesday/Friday)

• Reasoning about properties of multiple
objects.

Propositional Logic

A proposition is a statement that is,

by itself, either true or false.

Some Sample Propositions

• Puppies are cuter than kittens.

• Kittens are cuter than puppies.

• Usain Bolt can outrun everyone in this
room.

• CS103 is useful for cocktail parties.

• This is the last entry on this list.

Some Sample Propositions

• I am not throwing away my shot.

• I’m just like my country.

• I’m young, scrappy, and hungry.

• I’m not throwing away my shot.

• I’m ‘a get a scholarship to King’s College.

• I prob’ly shouldn’t brag, but dag, I amaze
and astonish.

• The problem is I got a lot of brains but no
polish.

Things That Aren't Propositions

Commands cannot be
true or false.

Things That Aren't Propositions

Questions cannot be
true or false.

Propositional Logic

• Propositional logic is a mathematical
system for reasoning about propositions
and how they relate to one another.

• Every statement in propositional logic
consists of propositional variables
combined via propositional connectives.

• Each variable represents some proposition,
such as “You liked it” or “You should have
put a ring on it.”

• Connectives encode how propositions are
related, such as “If you liked it, then you
should have put a ring on it.”

Propositional Variables

Each proposition will be represented by a
propositional variable.

Propositional variables are usually
represented as lower-case letters, such as
p, q, r, s, etc.

Each variable can take one one of two
values: true or false.

Propositional Connectives

There are seven different propositional
connectives, many of which will be familiar
from programming.

First, there’s the logical “NOT” operation:

¬p
You’d read this out loud as “not p.”

The fancy name for this operation is logical
negation.

Propositional Connectives

There are seven different propositional
connectives, many of which will be familiar
from programming.

Next, there’s the logical “AND” operation:

p ∧ q
You’d read this out loud as “p and q.”

The fancy name for this operation is logical
conjunction.

Propositional Connectives

There are seven different propositional
connectives, many of which will be familiar
from programming.

Then, there’s the logical “OR” operation:

p ∨ q
You’d read this out loud as “p or q.”

The fancy name for this operation is logical
disjunction. This is an inclusive or.

Truth Tables

A truth table is a table showing the truth
value of a propositional logic formula as a
function of its inputs.

Let’s go look at the truth tables for the
three connectives we’ve seen so far:

¬ ∧ ∨

Summary of Important Points

The ∨ connective is an inclusive “or.” It's true
if at least one of the operands is true.

Similar to the || operator in C, C++, Java, etc.
and the or operator in Python.

If we need an exclusive “or” operator, we can
build it out of what we already have.

Try this yourself! Take a minute to combine
these operators together to form an
expression that represents the exclusive or of
p and q.

Mathematical Implication

Implication

We can represent implications using this
connective:

p → q
You’d read this out loud as “p implies q.”

The fancy name for this is the material
conditional.

Question: What should the truth table for p → q
look like?

Pull out a sheet of paper, make a guess, and talk
things over with your neighbors!

Why This Truth Table?

The truth values of the → are the way they are
because they're defined that way.

The intuition:

Every propositional formula should be either true
or false – that’s just a guiding design principle
behind propositional logic.

We want p → q to be false only when p ∧ ¬q is true.

In other words, p → q should be true whenever
¬(p ∧ ¬q) is true.

What's the truth table for ¬(p ∧ ¬q)?

T

F

T

T

Truth Table for Implication

p q p → q

F

F

T

T

F

F

T

T

The implication is only false if p is true
and q isn’t. It’s true otherwise.

T

F

T

T

Truth Table for Implication

p q p → q

F

F

T

T

F

F

T

T

The implication is only false if p is true
and q isn’t. It’s true otherwise.

You will need to commit this table to memory. We’re going to
be using it a lot over the rest of the week.

Fun Fact: The Contrapositive Revisited

The Biconditional Connective

The Biconditional Connective

On Friday, we saw that “p if and only if q”
means both that p → q and q → p.

We can write this in propositional logic using
the biconditional connective:

p ↔ q
This connective’s truth table has the same
meaning as “p implies q and q implies p.”

Based on that, what should its truth table look
like?

Take a guess, and talk it over with your
neighbor!

Biconditionals

The biconditional connective p ↔ q is read
“p if and only if q.”

Here's its truth table:

T

F

F

T

p q p ↔ q

F

F

T

T

F

F

T

T

Biconditionals

The biconditional connective p ↔ q is read
“p if and only if q.”

Here's its truth table:

T

F

F

T

p q p ↔ q

F

F

T

T

F

F

T

T

One interpretation of ↔ is to think
of it as equality: the two

propositions must have equal truth
values.

True and False

There are two more “connectives” to speak
of: true and false.

The symbol ⊤ is a value that is always true.

The symbol ⊥ is value that is always false.

These are often called connectives, though
they don't connect anything.

(Or rather, they connect zero things.)

Proof by Contradiction

Suppose you want to prove p is true using a
proof by contradiction.

The setup looks like this:

• Assume p is false.

• Derive something that we know is false.

• Conclude that p is true.

In propositional logic:

(¬p → ⊥) → p

Operator Precedence

How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z

Operator precedence for propositional logic:

¬

∧

∨

→

↔

All operators are right-associative.

We can use parentheses to disambiguate.

Operator Precedence

How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z

Operator precedence for propositional logic:

¬

∧

∨

→

↔

All operators are right-associative.

We can use parentheses to disambiguate.

Operator Precedence

How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z

Operator precedence for propositional logic:

¬

∧

∨

→

↔

All operators are right-associative.

We can use parentheses to disambiguate.

Operator Precedence

How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z

Operator precedence for propositional logic:

¬

∧

∨

→

↔

All operators are right-associative.

We can use parentheses to disambiguate.

Operator Precedence

How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)

Operator precedence for propositional logic:

¬

∧

∨

→

↔

All operators are right-associative.

We can use parentheses to disambiguate.

Operator Precedence

How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)

Operator precedence for propositional logic:

¬

∧

∨

→

↔

All operators are right-associative.

We can use parentheses to disambiguate.

Operator Precedence

How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))

Operator precedence for propositional logic:

¬

∧

∨

→

↔

All operators are right-associative.

We can use parentheses to disambiguate.

Operator Precedence

How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))

Operator precedence for propositional logic:

¬

∧

∨

→

↔

All operators are right-associative.

We can use parentheses to disambiguate.

Operator Precedence

How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))

Operator precedence for propositional logic:

¬

∧

∨

→

↔

All operators are right-associative.

We can use parentheses to disambiguate.

Operator Precedence

How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))

Operator precedence for propositional logic:

¬

∧

∨

→

↔

All operators are right-associative.

We can use parentheses to disambiguate.

Operator Precedence

The main points to remember:

• ¬ binds to whatever immediately follows it.

• ∧ and ∨ bind more tightly than →.

We will commonly write expressions like p ∧ q
→ r without adding parentheses.

For more complex expressions, we'll try to add
parentheses.

Confused? Please ask!

The Big Table

Connective Read As C++ Version Fancy Name

¬

∧

∨

→

↔

⊤

⊥

“not”

“and”

“or”

“implies”

“if and only if”

“true”

“false”

!

&&

||

true

false

Negation

Conjunction

Disjunction

Implication

Biconditional

Truth

Falsity

Time-Out for Announcements!

Problem Set One

The checkpoint problem for PS1 was due at
11:59PM last night.

We'll try to have it graded and returned by
Wednesday morning.

The remaining problems from PS1 are due
on Thursday at 11:59PM.

Have questions? Stop by office hours or ask
on Campuswire!

Back to CS103!

Recap So Far

A propositional variable is a variable that is
either true or false.

The propositional connectives are

• Negation: ¬p

• Conjunction: p ∧ q

• Disjunction: p ∨ q

• Implication: p → q

• Biconditional: p ↔ q

• True: ⊤

• False: ⊥

Translating into Propositional Logic

Some Sample Propositions

a: Aang will be in the path of totality during the
solar eclipse.

b: Aang will defeat the firelord.

Some Sample Propositions

“Aang won’t defeat the firelord if Aang is
not in the path of totality during the

solar eclipse.”

a: Aang will be in the path of totality during the
solar eclipse.

b: Aang will defeat the firelord.

Some Sample Propositions

“Aang won’t defeat the firelord if Aang is
not in the path of totality during the

solar eclipse.”

¬a → ¬b

a: Aang will be in the path of totality during the
solar eclipse.

b: Aang will defeat the firelord.

“p if q”

translates to

q → p

It does not translate to

⚠ p → q ⚠

Some Sample Propositions

a: Aang will be in the path of totality during the
solar eclipse.

b: Aang will defeat the firelord.

c: The plan goes smoothly.

Some Sample Propositions

a: Aang will be in the path of totality during the
solar eclipse.

b: Aang will defeat the firelord.

c: The plan goes smoothly.

“If Aang will be in the path of totality, but
the plan does not go smoothly, Aang won’t

defeat the firelord.”

Some Sample Propositions

a: Aang will be in the path of totality during the
solar eclipse.

b: Aang will defeat the firelord.

c: The plan went smoothly.

“If Aang will be in the path of totality, but
the plan does not go smoothly, Aang won’t

defeat the firelord.”

a ∧ ¬c → ¬b

“p, but q”

translates to

p ∧ q

The Takeaway Point

When translating into or out of
propositional logic, be very careful not to
get tripped up by nuances of the English
language.

In fact, this is one of the reasons we have a
symbolic notation in the first place!

Many prepositional phrases lead to
counterintuitive translations; make sure to
double-check yourself!

Propositional Equivalences

Quick Question:

What would I have to show you to convince
you that the statement p ∧ q is false?

Quick Question:

What would I have to show you to convince
you that the statement p ∨ q is false?

de Morgan's Laws

Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q

We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q

These two equivalences are called De Morgan's
Laws.

de Morgan's Laws in Code

Pro tip: Don't write this:

if (!(p() && q())) {

/* … */

}

Write this instead:

if (!p() || !q()) {

/* … */

}

(This even short-circuits correctly!)

Logical Equivalence

Because ¬(p ∧ q) and ¬p ∨ ¬q have the same truth
tables, we say that they're equivalent to one another.

We denote this by writing

¬(p ∧ q) ≡ ¬p ∨ ¬q

The ≡ symbol is not a connective.

The statement ¬(p ∧ q) ↔ (¬p ∨ ¬q) is a propositional
formula. If you plug in different values of p and q, it will
evaluate to a truth value. It just happens to evaluate to
true every time.

The statement ¬(p ∧ q) ≡ ¬p ∨ ¬q means “these two
formulas have exactly the same truth table.”

In other words, the notation φ ≡ ψ means “φ and ψ
always have the same truth values, regardless of how
the variables are assigned.”

An Important Equivalence

Earlier, we talked about the truth table for
p → q. We chose it so that

p → q ≡ ¬(p ∧ ¬q)

Later on, this equivalence will be incredibly
useful:

¬(p → q) ≡ p ∧ ¬q

Another Important Equivalence

Here's a useful equivalence. Start with

p → q ≡ ¬(p ∧ ¬q)

By De Morgan's laws:

p → q ≡ ¬(p ∧ ¬q)

p → q≡ ¬p ∨ ¬¬q

p → q≡ ¬p ∨ q

Thus p → q ≡ ¬p ∨ q

Another Important Equivalence

Here's a useful equivalence. Start with

p → q ≡ ¬(p ∧ ¬q)

By De Morgan's laws:

p → q ≡ ¬(p ∧ ¬q)

p → q≡ ¬p ∨ ¬¬q

p → q≡ ¬p ∨ q

Thus p → q ≡ ¬p ∨ q

If p is false, then ¬p ∨ q is true. If
p is true, then q has to be true for
the whole expression to be true.

Why All This Matters

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

Why All This Matters

Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: By contrapositive. We will prove that if x < 8 and
y < 8, then x + y ≠ 16. Let x and y be arbitrary
numbers such that x < 8 and y < 8.

Note that

x + y < 8 + y

< 8 + 8

= 16.

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■

Why This Matters

Propositional logic is a tool for reasoning
about how various statements affect one
another.

To better understand how to prove a result,
it often helps to translate what you're
trying to prove into propositional logic first.

That said, propositional logic isn't
expressive enough to capture all
statements. For that, we need something
more powerful.

Let’s take a five minute break!

First-Order Logic

What is First-Order Logic?

First-order logic is a logical system for
reasoning about properties of objects.

Augments the logical connectives from
propositional logic with

• predicates that describe properties of
objects,

• functions that map objects to one
another, and

• quantifiers that allow us to reason
about multiple objects.

Some Examples

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

These blue terms are called constant
symbols. Unlike propositional

variables, they refer to objects, not
propositions.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

The red things that look like function
calls are called predicates. Predicates

take objects as arguments and evaluate
to true or false.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional connectives.
Because each predicate evaluates to true or false, we can

connect the truth values of predicates using normal
propositional connectives.

Reasoning about Objects

To reason about objects, first-order logic uses
predicates.

Examples:

Cute(Quokka)

ArgueIncessantly(Democrats, Republicans)

Applying a predicate to arguments produces a
proposition, which is either true or false.

Typically, when you’re working in FOL, you’ll
have a list of predicates, what they stand for,
and how many arguments they take. It’ll be
given separately than the formulas you write.

First-Order Sentences

Sentences in first-order logic can be constructed
from predicates applied to objects:

Cute(a) → Dikdik(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)

x < 8 → x < 137

The less-than sign is just another
predicate. Binary predicates are

sometimes written in infix
notation this way.

Numbers are not “built in” to
first-order logic. They’re constant

symbols just like “You” and “a”
above.

Equality

First-order logic is equipped with a special
predicate = that says whether two objects are
equal to one another.

Equality is a part of first-order logic, just as →
and ¬ are.

Examples:

Tom Marvolo Riddle = Lord Voldemort

Morning Star = Evening Star

Equality can only be applied to objects; to
state that two propositions are equal, use ↔.

Let's see some more examples.

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are functions.
Functions take objects as input and

produce objects as output.

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

Functions

First-order logic allows functions that return
objects associated with other objects.

Examples:

ColorOf(Money)

MedianOf(x, y, z)

x + y

As with predicates, functions can take in any
number of arguments, but always return a
single value.

Functions evaluate to objects, not
propositions.

Objects and Predicates

When working in first-order logic, be
careful to keep objects (actual things) and
propositions (true or false) separate.

You cannot apply connectives to objects:

⚠ Venus → TheSun ⚠

You cannot apply functions to propositions:

⚠ StarOf(IsRed(Sun) ∧ IsGreen(Mars))⚠

Ever get confused? Just ask!

The Type-Checking Table

… operate on ... … and produce

Connectives
(↔, ∧, etc.) …

Predicates
(=, etc.) …

Functions …

propositions a proposition

a propositionobjects

objects an object

One last (and major) change

Some muggle is intelligent.

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

∃ is the existential quantifier and
says “for some choice of m, the following

is true.”

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

The Existential Quantifier

A statement of the form

∃x. some-formula

is true if, for some choice of x, the statement
some-formula is true when that x is plugged
into it.

Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃w. Will(w)) → (∃x. Way(x))

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall
statement true or

false?

∃x. Smiling(x)

Fun with Edge Cases

∃x. Smiling(x)

Fun with Edge Cases

Existentially-quantified
statements are false in an empty
world, since it’s not possible to

choose an object!

Next Time

First-Order Logic

• Reasoning about groups of objects.

First-Order Translations

• Expressing yourself in symbolic math!

