
Mathematical Logic
Part One



Question: How do we formalize the 
definitions and reasoning we use in our 

proofs?



Where We're Going

Propositional Logic (Today)

• Basic logical connectives.

• Truth tables.

• Logical equivalences.

First-Order Logic (Wednesday/Friday)

• Reasoning about properties of multiple 
objects.



Propositional Logic



A proposition is a statement that is,

by itself, either true or false.



Some Sample Propositions

• Puppies are cuter than kittens.

• Kittens are cuter than puppies.

• Usain Bolt can outrun everyone in this 
room.

• CS103 is useful for cocktail parties.

• This is the last entry on this list.



Some Sample Propositions

• I am not throwing away my shot.

• I’m just like my country.

• I’m young, scrappy, and hungry.

• I’m not throwing away my shot.

• I’m ‘a get a scholarship to King’s College.

• I prob’ly shouldn’t brag, but dag, I amaze 
and astonish.

• The problem is I got a lot of brains but no 
polish.



Things That Aren't Propositions

Commands cannot be 
true or false.



Things That Aren't Propositions

Questions cannot be 
true or false.



Propositional Logic

• Propositional logic is a mathematical 
system for reasoning about propositions 
and how they relate to one another.

• Every statement in propositional logic 
consists of propositional variables
combined via propositional connectives.

• Each variable represents some proposition, 
such as “You liked it” or “You should have 
put a ring on it.”

• Connectives encode how propositions are 
related, such as “If you liked it, then you 
should have put a ring on it.”



Propositional Variables

Each proposition will be represented by a 
propositional variable.

Propositional variables are usually 
represented as lower-case letters, such as 
p, q, r, s, etc.

Each variable can take one one of two 
values: true or false.



Propositional Connectives

There are seven different propositional 
connectives, many of which will be familiar 
from programming.

First, there’s the logical “NOT” operation:

¬p
You’d read this out loud as “not p.”

The fancy name for this operation is logical 
negation.



Propositional Connectives

There are seven different propositional 
connectives, many of which will be familiar 
from programming.

Next, there’s the logical “AND” operation:

p ∧ q
You’d read this out loud as “p and q.”

The fancy name for this operation is logical 
conjunction.



Propositional Connectives

There are seven different propositional 
connectives, many of which will be familiar 
from programming.

Then, there’s the logical “OR” operation:

p ∨ q
You’d read this out loud as “p or q.”

The fancy name for this operation is logical 
disjunction. This is an inclusive or.



Truth Tables

A truth table is a table showing the truth 
value of a propositional logic formula as a 
function of its inputs.

Let’s go look at the truth tables for the 
three connectives we’ve seen so far:

¬       ∧        ∨



Summary of Important Points

The ∨ connective is an inclusive “or.” It's true 
if at least one of the operands is true.

Similar to the || operator in C, C++, Java, etc. 
and the or operator in Python.

If we need an exclusive “or” operator, we can 
build it out of what we already have.

Try this yourself! Take a minute to combine 
these operators together to form an 
expression that represents the exclusive or of 
p and q.



Mathematical Implication



Implication

We can represent implications using this 
connective:

p → q
You’d read this out loud as “p implies q.”

The fancy name for this is the material 
conditional.

Question: What should the truth table for p → q
look like?

Pull out a sheet of paper, make a guess, and talk 
things over with your neighbors!



Why This Truth Table?

The truth values of the → are the way they are 
because they're defined that way.

The intuition:

Every propositional formula should be either true 
or false – that’s just a guiding design principle 
behind propositional logic.

We want p → q to be false only when p ∧ ¬q is true.

In other words, p → q should be true whenever
¬(p ∧ ¬q) is true.

What's the truth table for ¬(p ∧ ¬q)?
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Truth Table for Implication

p q p → q
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The implication is only false if p is true 
and q isn’t. It’s true otherwise.
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Truth Table for Implication

p q p → q
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The implication is only false if p is true 
and q isn’t. It’s true otherwise.

You will need to commit this table to memory. We’re going to 
be using it a lot over the rest of the week.



Fun Fact: The Contrapositive Revisited



The Biconditional Connective



The Biconditional Connective

On Friday, we saw that “p if and only if q” 
means both that p → q and q → p.

We can write this in propositional logic using 
the biconditional connective:

p ↔ q
This connective’s truth table has the same 
meaning as “p implies q and q implies p.”

Based on that, what should its truth table look 
like?

Take a guess, and talk it over with your 
neighbor!



Biconditionals

The biconditional connective p ↔ q is read 
“p if and only if q.”

Here's its truth table:
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p q p ↔ q

F

F

T

T

F

F

T

T



Biconditionals

The biconditional connective p ↔ q is read 
“p if and only if q.”

Here's its truth table:
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p q p ↔ q
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One interpretation of ↔ is to think 
of it as equality: the two 

propositions must have equal truth 
values.



True and False

There are two more “connectives” to speak 
of: true and false.

The symbol ⊤ is a value that is always true.

The symbol ⊥ is value that is always false.

These are often called connectives, though 
they don't connect anything.

(Or rather, they connect zero things.)



Proof by Contradiction

Suppose you want to prove p is true using a 
proof by contradiction.

The setup looks like this:

• Assume p is false.

• Derive something that we know is false.

• Conclude that p is true.

In propositional logic:

(¬p → ⊥) → p  



Operator Precedence

How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z

Operator precedence for propositional logic:

¬  

∧  

∨  

→  

↔  

All operators are right-associative.

We can use parentheses to disambiguate.



Operator Precedence

How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z

Operator precedence for propositional logic:

¬

∧  

∨  

→  

↔  

All operators are right-associative.

We can use parentheses to disambiguate.



Operator Precedence

How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z

Operator precedence for propositional logic:

¬

∧  

∨  

→  

↔  

All operators are right-associative.

We can use parentheses to disambiguate.



Operator Precedence

How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z

Operator precedence for propositional logic:

¬

∧

∨  

→  

↔  

All operators are right-associative.

We can use parentheses to disambiguate.



Operator Precedence

How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)

Operator precedence for propositional logic:

¬  

∧

∨  

→  

↔  

All operators are right-associative.

We can use parentheses to disambiguate.



Operator Precedence

How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)

Operator precedence for propositional logic:

¬
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All operators are right-associative.

We can use parentheses to disambiguate.



Operator Precedence

How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))

Operator precedence for propositional logic:

¬
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Operator Precedence

How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))

Operator precedence for propositional logic:

¬

∧  

∨  

→

↔  

All operators are right-associative.

We can use parentheses to disambiguate.



Operator Precedence

How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))

Operator precedence for propositional logic:

¬

∧  

∨  

→

↔  

All operators are right-associative.

We can use parentheses to disambiguate.



Operator Precedence

How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))

Operator precedence for propositional logic:

¬  

∧  

∨  

→

↔  

All operators are right-associative.

We can use parentheses to disambiguate.



Operator Precedence

The main points to remember:

• ¬ binds to whatever immediately follows it.

• ∧ and ∨ bind more tightly than →.

We will commonly write expressions like p ∧ q
→ r without adding parentheses.

For more complex expressions, we'll try to add 
parentheses.

Confused? Please ask!



The Big Table

Connective Read As C++ Version Fancy Name

¬

∧

∨

→

↔

⊤

⊥

“not”

“and”

“or”

“implies”

“if and only if”

“true”

“false”

!

&&

||

true

false

Negation

Conjunction

Disjunction

Implication

Biconditional

Truth

Falsity



Time-Out for Announcements!



Problem Set One

The checkpoint problem for PS1 was due at 
11:59PM last night.

We'll try to have it graded and returned by 
Wednesday morning.

The remaining problems from PS1 are due 
on Thursday at 11:59PM.

Have questions? Stop by office hours or ask 
on Campuswire!



Back to CS103!



Recap So Far

A propositional variable is a variable that is 
either true or false.

The propositional connectives are

• Negation: ¬p

• Conjunction: p ∧ q

• Disjunction: p ∨ q

• Implication: p → q

• Biconditional: p ↔ q

• True: ⊤

• False: ⊥



Translating into Propositional Logic



Some Sample Propositions

a: Aang will be in the path of totality during the 
solar eclipse.

b: Aang will defeat the firelord. 



Some Sample Propositions

“Aang won’t defeat the firelord if Aang is 
not in the path of totality during the 

solar eclipse.”

a: Aang will be in the path of totality during the 
solar eclipse.

b: Aang will defeat the firelord. 



Some Sample Propositions

“Aang won’t defeat the firelord if Aang is 
not in the path of totality during the 

solar eclipse.”

¬a → ¬b

a: Aang will be in the path of totality during the 
solar eclipse.

b: Aang will defeat the firelord. 



“p if q”

translates to

q → p

It does not translate to

⚠ p → q ⚠



Some Sample Propositions

a: Aang will be in the path of totality during the 
solar eclipse.

b: Aang will defeat the firelord. 

c: The plan goes smoothly.



Some Sample Propositions

a: Aang will be in the path of totality during the 
solar eclipse.

b: Aang will defeat the firelord. 

c: The plan goes smoothly.

“If Aang will be in the path of totality, but 
the plan does not go smoothly, Aang won’t 

defeat the firelord.”



Some Sample Propositions

a: Aang will be in the path of totality during the 
solar eclipse.

b: Aang will defeat the firelord. 

c: The plan went smoothly.

“If Aang will be in the path of totality, but 
the plan does not go smoothly, Aang won’t 

defeat the firelord.”

a ∧ ¬c → ¬b



“p, but q”

translates to

p ∧ q



The Takeaway Point

When translating into or out of 
propositional logic, be very careful not to 
get tripped up by nuances of the English 
language.

In fact, this is one of the reasons we have a 
symbolic notation in the first place!

Many prepositional phrases lead to 
counterintuitive translations; make sure to 
double-check yourself!



Propositional Equivalences



Quick Question:

What would I have to show you to convince 
you that the statement p ∧ q is false?



Quick Question:

What would I have to show you to convince 
you that the statement p ∨ q is false?



de Morgan's Laws

Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q  

We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q

These two equivalences are called De Morgan's 
Laws.



de Morgan's Laws in Code

Pro tip: Don't write this:

if (!(p() && q())) {

/* … */

}

Write this instead:

if (!p() || !q()) {

/* … */

}

(This even short-circuits correctly!)



Logical Equivalence

Because ¬(p ∧ q) and ¬p ∨ ¬q have the same truth 
tables, we say that they're equivalent to one another.

We denote this by writing

¬(p ∧ q)  ≡  ¬p ∨ ¬q  

The ≡ symbol is not a connective.

The statement ¬(p ∧ q) ↔ (¬p ∨ ¬q) is a propositional 
formula. If you plug in different values of p and q, it will 
evaluate to a truth value. It just happens to evaluate to 
true every time.

The statement ¬(p ∧ q)  ≡  ¬p ∨ ¬q means “these two 
formulas have exactly the same truth table.”

In other words, the notation φ ≡ ψ means “φ and ψ 
always have the same truth values, regardless of how 
the variables are assigned.”



An Important Equivalence

Earlier, we talked about the truth table for 
p → q. We chose it so that

p → q    ≡    ¬(p ∧ ¬q)

Later on, this equivalence will be incredibly 
useful:

¬(p → q) ≡    p ∧ ¬q      



Another Important Equivalence

Here's a useful equivalence. Start with

p → q ≡ ¬(p ∧ ¬q)

By De Morgan's laws:

p → q ≡ ¬(p ∧ ¬q)

p → q≡ ¬p ∨ ¬¬q

p → q≡ ¬p ∨ q

Thus p → q ≡ ¬p ∨ q



Another Important Equivalence

Here's a useful equivalence. Start with

p → q ≡ ¬(p ∧ ¬q)

By De Morgan's laws:

p → q ≡ ¬(p ∧ ¬q)

p → q≡ ¬p ∨ ¬¬q

p → q≡ ¬p ∨ q

Thus p → q ≡ ¬p ∨ q

If p is false, then ¬p ∨ q is true. If 
p is true, then q has to be true for 
the whole expression to be true.



Why All This Matters



Why All This Matters

Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   
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Why All This Matters

Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16
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Why All This Matters

Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16
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Suppose we want to prove the following 
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Why All This Matters

Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16



Why All This Matters

Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16



Why All This Matters

Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”



Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: By contrapositive. We will prove that if x < 8 and
y < 8, then x + y ≠ 16. Let x and y be arbitrary
numbers such that x < 8 and y < 8.

Note that

x + y < 8 + y

< 8 + 8

= 16.

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■



Why This Matters

Propositional logic is a tool for reasoning 
about how various statements affect one 
another.

To better understand how to prove a result, 
it often helps to translate what you're 
trying to prove into propositional logic first.

That said, propositional logic isn't 
expressive enough to capture all 
statements. For that, we need something 
more powerful.



Let’s take a five minute break!



First-Order Logic



What is First-Order Logic?

First-order logic is a logical system for 
reasoning about properties of objects.

Augments the logical connectives from 
propositional logic with

• predicates that describe properties of 
objects,

• functions that map objects to one 
another, and

• quantifiers that allow us to reason 
about multiple objects.



Some Examples



Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)



Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)



Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)



Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

These blue terms are called constant 
symbols. Unlike propositional 

variables, they refer to objects, not 
propositions.



Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)



Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

The red things that look like function 
calls are called predicates. Predicates 

take objects as arguments and evaluate 
to true or false.



Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)



Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional connectives. 
Because each predicate evaluates to true or false, we can 

connect the truth values of predicates using normal 
propositional connectives.



Reasoning about Objects

To reason about objects, first-order logic uses 
predicates.

Examples:

Cute(Quokka)    

ArgueIncessantly(Democrats, Republicans)  

Applying a predicate to arguments produces a 
proposition, which is either true or false.

Typically, when you’re working in FOL, you’ll 
have a list of predicates, what they stand for, 
and how many arguments they take. It’ll be 
given separately than the formulas you write.



First-Order Sentences

Sentences in first-order logic can be constructed 
from predicates applied to objects:

Cute(a) → Dikdik(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)

x < 8 → x < 137

The less-than sign is just another 
predicate. Binary predicates are 

sometimes written in infix 
notation this way.

Numbers are not “built in” to 
first-order logic. They’re constant 

symbols just like “You” and “a” 
above.



Equality

First-order logic is equipped with a special 
predicate = that says whether two objects are 
equal to one another.

Equality is a part of first-order logic, just as → 
and ¬ are.

Examples:

Tom Marvolo Riddle = Lord Voldemort

Morning Star = Evening Star

Equality can only be applied to objects; to 
state that two propositions are equal, use ↔.



Let's see some more examples.



FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
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FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are functions. 
Functions take objects as input and 

produce objects as output.



FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



Functions

First-order logic allows functions that return 
objects associated with other objects.

Examples:

ColorOf(Money)

MedianOf(x, y, z)

x + y

As with predicates, functions can take in any 
number of arguments, but always return a 
single value.

Functions evaluate to objects, not 
propositions.



Objects and Predicates

When working in first-order logic, be 
careful to keep objects (actual things) and 
propositions (true or false) separate.

You cannot apply connectives to objects:

⚠ Venus → TheSun ⚠

You cannot apply functions to propositions:

⚠ StarOf(IsRed(Sun) ∧ IsGreen(Mars))⚠

Ever get confused? Just ask!



The Type-Checking Table

… operate on ... … and produce

Connectives
(↔, ∧, etc.) …

Predicates
(=, etc.) …

Functions …

propositions a proposition

a propositionobjects

objects an object



One last (and major) change



Some muggle is intelligent.



Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



∃ is the existential quantifier and 
says “for some choice of m, the following 

is true.”

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



The Existential Quantifier

A statement of the form

∃x. some-formula

is true if, for some choice of x, the statement 
some-formula is true when that x is plugged 
into it.

Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃w. Will(w)) → (∃x. Way(x))



The Existential Quantifier

∃x. Smiling(x)



The Existential Quantifier

∃x. Smiling(x)



The Existential Quantifier
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The Existential Quantifier

∃x. Smiling(x)



The Existential Quantifier

∃x. Smiling(x)



The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) 
is true for some 
choice of x, this 
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∃x. Smiling(x)

Fun with Edge Cases

Existentially-quantified 
statements are false in an empty 
world, since it’s not possible to 

choose an object!



Next Time

First-Order Logic

• Reasoning about groups of objects.

First-Order Translations

• Expressing yourself in symbolic math!


